Comparing cointegrating regression estimators: Some additional Monte Carlo results

نویسنده

  • Jose G. Montalvo
چکیده

This paper compares the finite sample performance of the canonical correlation regression estimator (CCR) and Stock and Watson's (A simple estimator of cointegration vectors in higher order integrated systems, Econometrica, 1993, 61(4), 783-820) dynamic ordinary least squares estimator (DOLS) using the models proposed by Inder (Journal of Econometrics, 1993, 57, 53-68). The CCR estimator shows smaller bias than the OLS and the fully modified. The DOLS estimator performs systematically better than the CCR estimator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic Properties of the Efficient Estimators for Cointegrating Regression Models with Serially Dependent Errors1

Abstract In this paper, we analytically investigate three efficient estimators for cointegrating regression models: Phillips and Hansen’s (1990) fully modified OLS estimator, Park’s (1992) canonical cointegrating regression estimator, and Saikkonen’s (1991) dynamic OLS estimator. We consider the case where the regression errors are moderately serially correlated and the AR coefficient in the re...

متن کامل

Asymptotic Properties of the Efficient Estimators for Cointegrating Regression Models with Serially Dependent Errors

In this paper, we analytically investigate three efficient estimators for cointegrating regression models: Phillips and Hansen’s (1990) fully modified OLS estimator, Park’s (1992) canonical cointegrating regression estimator, and Saikkonen’s (1991) dynamic OLS estimator. First, by the Monte Carlo simulations, we demonstrate that these efficient methods do not work well when the regression error...

متن کامل

Asymptotic Properties of Least Squares Estimators of Cointegrating Vectors

Time series variables that stochastically trend together form a cointegrated system. In such systems, certain linear combinations of contemporaneous values of these variables have a lower order of integration than does each variable considered individually. These linear combinations are given by cointegrating vectors. OLS and NLS estimators of the parameters of a cointegrating vector are shown ...

متن کامل

Semiparametrically Modified OLS and IV Estimators for Linear Cointegrating Models

This paper proposes a semiparametrically modified OLS (SM-OLS) estimator and a semiparametrically modified IV (SM-IV) estimator via kernel method for linear cointegrating models when cointegrating equilibrium errors respond instantaneously to changes of the first-differenced integrated regressor in the linear cointegrating models. Both the proposed estimators are shown to have a mixed normal li...

متن کامل

Bootstrapping Cointegrating Regressions1

In this paper, we consider bootstrapping cointegrating regressions. It is shown that the method of bootstrap, if properly implemented, generally yields consistent estimators and test statistics for cointegrating regressions. We do not assume any speci ̄c data generating process, and employ the sieve bootstrap based on the approximated ̄nite-order vector autoregressions for the regression errors ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003